بارکد سایت
موضوعات مطالب
مهندسی مکانيک - جامدات
مهندسی مکانيک - سیالات
مهندسی مکانيک - ساخت و جوش
مهندسی مکانيک - خودرو
مهندسی برق - الکترونیک
مهندسی برق - مخابرات
مهندسی برق - قدرت
مهندسی عمران - عمران
مهندسی عمران - آب
مهندسی عمران - نقشه برداری
مهندسی مواد - متالورژی
مهندسی مواد - سرامیک
مهندسی کامپيوتر - نرم افزار
مهندسی کامپيوتر - سخت افزار
مهندسی شيمی - پالایش
مهندسی شيمی - معدنی و غذایی
مهندسی کشاورزی
مهندسی معماری
مهندسی منابع طبیعی
مهندسی صنايع
مهندسی هوافضا
مهندسی پزشکی
مهندسی نفت و گاز
مهندسي فناوری اطلاعات
مهندسی معدن
مهندسی نيروگاه
مهندسی رباتیک
مهندسی نساجی
مهندسی پلیمر
مهندسی راه آهن
مهندسی هسته ای
مهندسی دریا
مهندسی اپتیک و فوتونیک
نرم افزار های مهندسی
فیلم های آموزشی و مهندسی
هندبوک ها و جزوه های مهندسی
پایان نامه ها و پروژه های مهندسی
علم نانو تکنولوژی
علم کار آفرينی
علم نگهداری و تعمیرات
آشنایی با رشته های مهندسی
آشنایی با رشته های غیر مهندسی
کارشناسی ارشد - منابع و رشته ها
ورود به دانشگاه - کنکور
آموزش زبان انگلیسی
آگهی های استخدام
رایانه و اینترنت
دانلود نرم افزار
تصاویر جالب
English Articles
بخش های ویژه
کنکور 90
آشنایی با رشته های مهندسی
دانلود مقاله های پی دی اف - PDF
  نانو فناوری
  بررسی ساختار و عملكرد آلیاژهای حافظه دار در پزشكی
  پروتکل  نقطه به نقطه
  فهرست کامل خطاهای مودم هنگام اتصال به اینترنت
  تاثیر روانکار بر صافی سطح درتراشکاری آلومینیوم
  كارآفرینی چیست؟
  برج خنک کننده
  خواص دارویی و درمانی گیاهان
  Hydraulic Turbines
  نیروگاههای زمین گرمایی - لاتین
  توربین بخار - لاتین
  آشنایی با فرمت Mpeg-2
  نانو کامپوزیت های نانو ذره ای
  آشنایی با مدارهای فرمان
  170 نکته اجرایی در ساختمان
  روش های شناسایی و مقابله با موشک کروز
  سیستم های جدید ذخیره سازی انرژی در چرخ طیار
  معرفی تكنولوژی سوپرآلیاژ و میزان كاربرد آن در جهان و ایران
  موتورهای استرلینگ
  نانوحسگرها
  نقش شبیه سازی در مهندسی فرآیند
  روشهای پیاده سازی یک شبکه کامپیوتری
  17 توصیه مهم در مدیریت
  کارشناسی و کارشناسی ارشد مهندسی فناوری اطلاعات
  کانی شناسی طلا
  تاریخچه گیربکسهای اتوماتیک
  تکنولوژی جدید در عایقکاری رطوبتی ساختمان
  کامت، نخستین هواپیمای مسافربری جت جهان
  مدیریت ارتباط با مشتری (CRM)
  اتوماسیون صنعتی - Industrial automation
  نانوالکترونیک چیست؟
  شبکه های عصبی
  آزمونهای غیر مخرب (Non Destructive Testing)
  تعیین جنسیت جوجه ها پیش از تفریخ بصورت اتوماتیك
  تاریخچه هواپیما
  بازرسی کیفی مخازن تحت فشار
  آبیاری و انواع روشهای آن
  صنعت و تکنولوژی هوافضا
  روشهای تصفیه مواد نفتی
  گاز از خام تا فرآورده
جهت دانلود راحتتر فایل های بالا روی آنها کلیک راست کرده و Save Target As را انتخاب نمایید.
آمار
درباره سایت
دانشنامه مرجع مهندسی ايران - Iran Engineering Reference Encyclopedia از سال 1385-2006 در دو نسخه، تا به امروز با رویکردی علمی، در جهت ارائه مطالب کاربردی در تمام گرایش های مهندسی با بهترین کیفیت محتوایی، ویرایشی، ترتیب و دسترسی آسان و بدور از مطالب و تبلیغات شایع، کوشیده است.
شما دانشجویان و کاربران گرامی می توانید با معرفی سایت به دوستان خود و ذکر منبع نوشتار ها هنگام برداشت، از آن حمایت، و پیشرفت علمی و محتوایی دانشنامه مرجع مهندسی ايران را تضمین نمایید.

با ما در ارتباط باشید:
دریافت ها
هندبوک و جزوه های مهندسی
پایان نامه و  پروژه های مهندسی
نرم افزار های مهندسی
فیلم های آموزشی و مهندسی
جدیدترین مقاله های سایت
» طرز کار برنامه های ضد ویروس (Anti-Virus)
» آشنایی با پارامترهای مودم TD-LTE، شامل RSRP، RSRQ، RSSI، CINR
» کتاب نقشه کشی برق ساختمان + دانلود
» آشنایی با برخی از پر کاربردترین مخفف های دنیای کامپیوتر و اینترنت - Computer Abbreviations
» حل مسائل پیچیده ریاضی با نرم افزار Matbasic 1.29 + دانلود
» استفاده از فوران گیرهای سطحی به همراه سیستم ESG در سکوهای نیمه شناور حفاری
» آموزش نصب VMware ESXi 5.0 + دانلود به صورت PDF
» مصارف عمده تيتانيوم در صنعت
» پلاتين یا نقره كوچك
» آشنایی با محيط زيست دریای خزر
» آشنایی با مؤسسه ملی اقیانوس شناسی
» روش های عمده استخراج طلا
» ویژگیهای شیمیایی آب دریای خزر
» تکنیک های تند خوانی
» مدیریت کیفیت – ISO 9001 QMS
» درخواست پیشنهاد یا RFQ چیست؟ - Request for Quotation
» Invent Your Own Computer Games with Python
» ترکهای سطوح بتنی - Cracks in concrete surfaces
» نگاهی به بیماری مایکوپلاسمای پرندگان
» اهمیت پرورش گیاهان دارویی در فضای سبز شهری
» مروری بر پیشینه آلودگی هوا، منابع و راههای پیشگیری
» 9 روش برای طراحی موفق آرم تجاری
» روش های تعیین محل ایستگاه ها برای پمپاژ آب
» استاندارد W3C و معتبر سازی کدهای HTML
» تاریخچه ی پیدایش ساختمان های غلافی - ساختمان اپرای سیدنی
» کتاب راهنمای کامل خط فرمان در سیستم عامل لینوکس
» عیوب ناشی از ماسه داغ در خطوط قالبگیری با ماسه تر‏
» آشنایی با کابل HDMI و انواع آن
» مبردها و مواد سرمازا
» تعیین دوره مطلوب فعالیتهای نت پیشگیرانه
World Engineering
Discovery Science
Engineering Global
Try Engineering
the Code Progect
National Geographic
مقاله های پربازدید
» اتوماسیون صنعتی
» تعریف ماشینکاری الکتروشیمیایی
» دمای بین پاسی در جوشکاری
» شناسایی از طریق فرکانس رادیویی
» اندروید چیست؟
» 160 نكته در مدیریت
» مهندسی مجدد
» نرم افزارهای برتر مهندسی مکانیک
» شش سیگما چیست؟
» مخفف ها در مهندسی شیمی
» تکنولوژی کابلها در صنعت برق
» جوشكاری فولادهای آستنیتی منگنز
» لغات تخصصی پر کاربرد کامپیوتر
» انتقال دهنده های پنوماتیكی
» مراحل تمایزفیزیولوژیکی جوانه
» مبانی زمین شناسی ساختمانی
» دانلود کتاب آموزش اسکیس و راندو
» تحلیل کامپیوتری سازه ها
» مقدمه ای بر بتن الیافی
» تعریف متره و برآورد و انواع آن
» تاریخچه ساخت و کاربرد بتن سبک
» توربو شارژرها چگونه کار می کنند؟
» اهمیت رمزنگاری در امنیت شبكه
» استفاده از آب پنیر در تغذیه طیور
» تاریخچه نگهداری و تعمیرات
» پل ها و انواع آن
» كاربردهای قیر زغال سنگی
» تکنولوژی حفاری نفت و گاز با لیزر
» خواص و نحوه ی تولید الیاف کربنی
» باران اسیدی
» معرفی نسل های مختلف جنگنده ها
» روشهای تحلیل دینامیکی
» معماری ارگانیک
» جوشكاری زیر آب
» اصطلاحات انگلیسی هیدرولوژی
» پدیده کرونا
» تجهیزات حفاظت الکتریکی
» تجهیزات پستهای فشار قوی
» آموزش شبكه
» ترمزهای هواپیماهای جت
» پلاستیك های زیستی
» انرژی زمین گرمایی
» گریس و ساختار آن
» سازه های ماکارانی
» سیستم های رادیوئی تروپوسکتر
» برج های خنك كننده
» مدیریت زنجیره تامین چیست؟
» بررسی خصوصیات بتن اسفنجی
» جوشکاری لیزری
» پست مدرنیسم
» موشک باستیک
» سوگند نامه مهندسی
» مدیریت حفاظت بتن
» نرم افزار ویکیپدیا آفلاین فارسی
» تشریح کامل مراحل پی سازی
» واکسیناسیون در طیور
» اصول کار کوره
» انواع روشهای لیچینگ
» الکترو موتور وعیب یابی آن
» ماشینهای الکتریکی
» كود دهی گیاهان گلخانه ای
» اصول محاسبات بارهای برودتی
» آزمونهای غیر مخرب
» انواع سوخت موشکها
» مدیریت زنجیره تامین چیست؟
» برج های خنك كننده
» بررسی خصوصیات بتن اسفنجی
» اهداف واحد کنترل کیفیت در معدن
» انتقال دهنده های پنوماتیكی
» راهنمای تشخیص معایب پیستون
» روشهای تصفیه مواد نفتی
» تحلیل کامپیوتری سازه ها
» مبانی زمین شناسی ساختمانی
» مشکل پیچیدگی در جوشکاری
لینك دوستان
امکانات
گرایش های علمی و تحصیلی کاربران





RSS
My Tinylink
دانشنامه مرجع مهندسی ایران در زمینه های مهندسی مکانیک، مهندسی برق، مهندسی عمران، مهندسی کشاورزی، مهندسی کامپیوتر، مهندسی صنایع، مهندسی متالورژی و مواد، مهندسی شیمی و پلیمر، مهندسی نفت، مهندسی نساجی، مهندسی هوافضا، مهندسی رباتیک، مهندسی فناوری اطلاعات، مهندسی معماری، مهندسی پزشکی، مهندسی معدن، مهندسی راه آهن، مهندسی نیروگاه و زمینه های علمی نانو تکنولوژی، کارآفرینی، نگهداری و تعمیرات، آشنایی با رشته های مهندسی و غیر مهندسی، مجموعه ای ازرشمند و علمی برای تمام مهندسان و همه علاقه مندان این حوزه ها می باشد.
تبلیغات
نخستین سرویس کوتاه کننده لینک در ایران
ابزار های مهندسی سرویس خبر خوان

مهندسی مکانیک مهندسی برق مهندسی عمران مهندسی کشاورزی مهندسی مواد مهندسی کامپیوتر مهندسی شیمی مهندسی هوافضا مهندسی صنایع مهندسی معماری مهندسی نفت مهندسی فناوری اطلاعات مهندسی پزشکی مهندسی نساجی مهندسی معدن مهندسی رباتیک
Drilling Data Handbook Download        Moving to Microsoft Visual Studio 2010       Handbook Highway Engineering       کتاب فارسی آموزش اسکیس و راندو       Advances in Mechanics of Solids       Modern Design Magazine #1


The stainless properties of stainless steels are primarily due to the presence of chromium in quantities greater than roughly 12 weight percent. This level of chromium is the minimum level of chromium to ensure a continuous stable layer of protective chromium-rich oxide forms on the surface. The ability to form chromium oxide in the weld region must be maintained to ensure stainless properties of the weld region after welding. In commercial practice, however, some stainless steels are sold containing as little as 9 weight percent chromium and will rust at ambient temperatures.
Stainless steels are generally classified by their microstructure and are identified as ferritic, martensitic, austenitic, or duplex (austenitic and ferritic). The microstructure significantly affects the weld properties and the choice of welding procedure used for these stainless steel alloys. In addition, a number of precipitation-hardenable (PH) stainless steels exist. Precipitation-hardenable stainless steels have martensitic or austenitic microstructures.
Iron, carbon, chromium and nickel are the primary elements found in stainless steels and significantly affect microstructure and welding. Other alloying elements are added to control microstructure or enhance material properties. These other alloys affect welding properties by changing the chromium or nickel equivalents and thereby changing the microstructure of the weld metal. Generally, 200 and 300 series alloys are mostly austenitic and 400 series alloys are ferritic or martensitic, but exceptions exist.
Stainless steels are subject to several forms of localized corrosive attack. The prevention of localized corrosive attack is one of the concerns when selecting base metal, filler metal and welding procedures when fabricating components from stainless steels.
Stainless steels are subject to weld metal and heat affected zone cracking, the formation of embrittling second phases and concerns about ductile to brittle fracture transition. The prevention of cracking or the formation of embrittling microstructures is another main concern when welding or fabricating stainless steels.


Welding Austenitic Stainless Steels
Ideally, austenitic stainless steels exhibit a single-phase, the face-centered cubic (fcc) structure, that is maintained over a wide range of temperatures. This structure results from a balance of alloying additions, primarily nickel, that stabilize the austenite phase from elevated to cryogenic temperatures. Because these alloys are predominantly single phase, they can only be strengthened by solid-solution alloying or by work hardening. Precipitation-strengthened austenitic stainless steels will be discussed separately below.
The austenitic stainless steels were developed for use in both mild and severe corrosive conditions. Austenitic stainless steels are used at temperatures that range from cryogenic temperatures, where they exhibit high toughness, to elevated temperatures, where they exhibit good oxidation resistance. Because the austenitic materials are nonmagnetic, they are sometimes used in applications where magnetic materials are not acceptable.
The most common types of austenitic stainless steels are the 200 and 300 series. Within these two grades, the alloying additions vary significantly. Furthermore, alloying additions and specific alloy composition can have a major effect on weldability and the as-welded microstructure. The 300 series of alloys typically contain from 8 to 20 weight percent Ni and from 16 to 25 weight percent Cr.
A concern, when welding the austenitic stainless steels, is the susceptibility to solidification and liquation cracking. Cracks can occur in various regions of the weld with different orientations, such as centerline cracks, transverse cracks, and microcracks in the underlying weld metal or adjacent heat-affected zone (HAZ). These cracks are primarily due, to low-melting liquid phases, which allow boundaries to separate under the thermal and shrinkage stresses during weld solidification and cooling.
Even with these cracking concerns, the austenitic stainless steels are generally considered the most weldable of the stainless steels. Because of their physical properties, the welding behavior of austenitic stainless steels is different than the ferritic, martensitic, and duplex stainless steels. For example, the thermal conductivity of austenitic alloys is roughly half that of ferritic alloys. Therefore, the weld heat input that is required to achieve the same penetration is reduced. In contrast, the coefficient of thermal expansion of austenite is 30 to 40 percent greater than that of ferrite, which can result in increases in both distortion and residual stresses, due to welding. The molten weld pool of the austenitic stainless steels is commonly more viscous, or sluggish, than ferritic and martensitic alloys. This slows down the metal flow and wettability of welds in austenitic alloys, which may promote lack-of-fusion defects when poor welding procedures are employed.

Welding Ferritic Stainless Steels
Ferritic stainless steels comprise approximately half of the 400 series stainless steels. These steels contain from 10.5 to 30 weight percent chromium along with other alloying elements, particularly molybdenum. Ferritic stainless steels are noted for their stress-corrosion cracking (SCC) resistance and good resistance to pitting and crevice corrosion in chloride environments, but have poor toughness, especially in the welded condition.
Ideally, ferritic stainless steels have the body-centered cubic (bcc) crystal structure known as ferrite at all temperatures below their melting temperatures. Many of these alloys are subject to the precipitation of undesirable intermetallic phases when exposed to certain temperature ranges. The higher-chromium alloys can be embrittled by precipitation of the tetragonal sigma phase, which is based on the compound FeCr.
Molybdenum promotes formation of the complex cubic chi phase, which has a nominal composition of Fe36Cr12Mo10. Embrittlement increases with increasing chromium plus molybdenum contents. It is generally agreed that the severe embrittlement which occurs upon long-term exposure is due to the decomposition of the iron-chromium ferrite phase into a mixture of iron-rich alpha and chromium-rich alpha-prime phases. This embrittlement is often called "alpha-prime embrittlement." Additional reactions such as chromium carbide and nitride precipitation may play a significant role in the more rapid, early stage 885 °F embrittlement.
The ferritic stainless steels have higher yield strengths and lower ductilities than austenitic stainless steels. Like carbon steels, and unlike austenitic stainless steels, the ferritic stainless alloys exhibit a transition from ductile-to-brittle behavior as the temperature is reduced, especially in notched impact tests. The ductile-to-brittle transition temperature (DBTT) for the ultrahigh-purity ferritic stainless steels is lower than that for standard ferritic stainless steels. It is typically below room temperature for the ultrahigh-purity ferritic stainless steels. Nickel additions lower the DBTT and there by slightly increase the thicknesses associated with high toughness. Nevertheless, with or without nickel, the ferritic stainless steels would need engineering review for anything other than thin walled applications as they are prone to brittle failure.

Welding Martensitic Stainless Steels
Martensitic stainless steels are considered to be the most difficult of the stainless steel alloys to weld. Higher carbon contents will produce greater hardness and, therefore, an increased susceptibility to cracking.
In addition to the problems that result from localized stresses associated with the volume change upon martensitic transformation, the risk of cracking will increase when hydrogen from various sources is present in the weld metal. A complete and appropriate welding process is needed to prevent cracking and produce a sound weld.
Martensitic stainless steels are essentially alloys of chromium and carbon that possess a body-centered cubic (bcc) or body-centered tetragonal (bct) crystal structure (martensitic) in the hardened condition. They are ferromagnetic and hardenable by heat treatments. Their general resistance to corrosion is adequate for some corrosive environments, but not as good as other stainless steels.
The chromium content of these materials generally ranges from 11.5 to 18 weight percent, and their carbon content can be as high as 1.2 weight percent. The chromium and carbon contents are balanced to ensure a martensitic structure after hardening. Martensitic stainless steels are chosen for their good tensile strength, creep, and fatigue strength properties, in combination with moderate corrosion resistance and heat resistance.
The most commonly used alloy within this stainless steel family is type 410, which contains about 12 weight percent chromium and 0.1 weight percent carbon to provide strength. Molybdenum can be added to improve mechanical properties or corrosion resistance. Nickel can be added for the same reasons. When higher chromium levels are used to improve corrosion resistance, nickel also serves to maintain the desired microstructure and to prevent excessive free ferrite. The limitations on the alloy content required to maintain the desired fully martensitic structure restrict the obtainable corrosion resistance to moderate levels.

Welding Duplex Stainless Steels
Duplex stainless steels are two phase alloys based on the iron-chromium-nickel system. Duplex stainless steels usually comprise approximately equal proportions of the body-centered cubic (bcc) ferrite and face-centered cubic (fcc) austenite phases in their microstructure and generally have a low carbon content as well as, additions of molybdenum, nitrogen, tungsten, and copper. Typical chromium contents are 20 to 30 weight percent and nickel contents are 5 to 10 weight percent. The specific advantages offered by duplex stainless steels over conventional 300 series stainless steels are strength, chloride stress-corrosion cracking resistance, and pitting corrosion resistance.
Duplex stainless steels are used in the intermediate temperature ranges from ambient to several hundred degrees Fahrenheit (depending on environment), where resistance to acids and aqueous chlorides is required. The weldability and welding characteristics of duplex stainless steels are better than those of ferritic stainless steels, but generally not as good as austenitic materials.
A suitable welding process is needed to obtain sound welds. Duplex stainless steel weldability is generally good, although it is not as forgiving as austenitic stainless steels. Control of heat input is important. Solidification cracking and hydrogen cracking are concerns when welding duplex stainless steels, but not as significant for some other stainless steel alloys.
Current commercial grades of duplex stainless steels contain between 22 and 26 weight percent chromium, 4 to 7 weight percent nickel, up to 4.5 weight percent molybdenum, as well as some copper, tungsten, and nitrogen. Modifications to the alloy compositions have been made to improve corrosion resistance, workability, and weldability. In particular, nitrogen additions have been effective in improving pitting corrosion resistance and weldability.
The properties of duplex stainless steels can be appreciably affected by welding. Due to the importance of maintaining a balanced microstructure and avoiding the formation of undesirable metallurgical phases, the welding procedures must be properly specified and controlled. If the welding procedure is improper and disrupts the appropriate microstructure, loss of material properties can occur.
Because these steels derive properties from both austenitic and ferritic portions of the structure, many of the single-phase base material characteristics are also evident in duplex materials. Austenitic stainless steels have good weldability and low-temperature toughness, whereas their chloride SCC resistance and strength are comparatively poor. Ferritic stainless steels have good resistance to chloride SCC but have poor toughness, especially in the welded condition. A duplex microstructure with high ferrite content can therefore have poor low-temperature notch toughness, whereas a structure with high austenite content can possess low strength and reduced resistance to chloride SCC.
The high alloy content of duplex stainless steels also makes them susceptible to the formation of intermetallic phases from extended exposure to high temperatures. Significant intermetallic precipitation may lead to a loss of corrosion resistance and sometimes to a loss of toughness.
Duplex stainless steels have roughly equal proportions of austenite and ferrite, with ferrite being the matrix. The duplex stainless steels alloying additions are either austenite or ferrite formers. This is occurs by extending the temperature range over which the phase is stable. Among the major alloying elements in duplex stainless steels chromium and molybdenum are ferrite formers, whereas nickel, carbon, nitrogen, and copper are austenite formers.
Composition also plays a major role in the corrosion resistance of duplex stainless steels. Pitting corrosion resistance can be adversely affected. To determine the extent of pitting corrosion resistance offered by the material, a pitting resistance equivalent is commonly used.

Welding Precipitation-Hardenable Stainless Steels

Precipitation-hardening (PH) stainless steels are iron-chromium-nickel alloys. They generally have better corrosion resistance than martensitic stainless steels. The high tensile strengths of the PH stainless steels is due to precipitation hardening of a martensitic or austenitic matrix. Copper, aluminum, titanium, niobium (columbium), and molybdenum are the primary elements added to these stainless steels to promote precipitation hardening.
Precipitation-hardening stainless steels are commonly categorized into three types martensitic, semiaustenitic, and austenitic based on their martensite start and finish (Ms and Mf) temperatures and the resulting microstructures. The issues involved in welding PH steels are different for each group.
It is important to understand the microstructure of the particular type of alloy being welded. Some of the PH stainless steels solidify as primary ferrite and have relatively good resistance to hot cracking. In other PH stainless steels, ferrite is not formed, and it is more difficult to weld these alloys without hot cracking. 

www.smsm.ir

منبع:

دانشنامه مرجع مهندسی ايران - WWW.SMSM.IR

توضیحات:

(برداشت این مقاله تنها با ذکر منبع مجاز است)


نوع مطلب : مهندسی مواد - متالورژی
نوشته شده در دوشنبه ۱۸ بهمن ۱۳۸۹ توسط SMSM |           |
تبلیغات
آی پی خود را ببنید
بازی فکری: تست تمرکز
بازی شطرنج آنلاین